ฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน
ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่งของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร
ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไร อ่านเพิ่มเติม
วันพุธที่ 12 กรกฎาคม พ.ศ. 2560
ฟังชันกำลังสอง
ฟังก์ชันกำลังสอง คือ ฟังก์ชันที่อยู่ในรูป
y = ax2 + bx + c เมื่อ a,b,c เป็นจำนวนจริงใดๆ และ a ≠ 0 ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ a
, b และ c และเมื่อค่าของ a เป็นบวกหรือลบ จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ อ่านเพิ่มเติ
ฟังชันเชิงเส้น
1.2 ฟังก์ชันเชิงเส้น คือ
ฟังก์ชันที่อยู่ในรูป y = ax+b เมื่อ a ,b เป็นจำนวนจริง
และ กราฟของฟังก์ชันเชิงเส้นจะเป็นเส้นตรง
ตัวอย่างของฟังก์ชันเชิงเส้น
ได้แก่
ฟังก์ชัน y = ax +
b เมื่อ a = 0 จะได้ฟังก์ชันที่อยู่ในรูป y
= b ซึ่งมีชื่อเรียกว่า ฟังก์ชันคงตัว (constant
function) กราฟของฟังก์ชันคงตัวจะเป็นเส้นตรงที่ขนานกับแกน X ตัวอย่างของฟังก์ชันคงตัว
ได้แก่ อ่านเพิ่มเติม
ความสัมพันธ์เเละนฟังชัน
คู่อันดับ (Order Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น
คู่อันดับ a, b จะเขียนแทนด้วย (a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า
และเรียก b ว่าเป็นสมาชิกตัวหลัง
(การเท่ากับของคู่อันดับ) (a, b) = (c, d) ก็ต่อเมื่อ a =
c และ b = d
ผลคูณคาร์ทีเชียน (Cartesian Product) ผลคูณคาร์ทีเซียนของเซต A และเซต B คือ
เซตของคู่อันดับ (a, b) ทั้งหมด โดยที่ a เป็นสมาชิกของเซต A และ b เป็นสมาชิกของเซต B อ่านเพิ่มเติม
การนำสมบัติของจำนวนจริงไปใช้ในการเเก้สมการกำลังสอง
ในการเขียนสัญลักษณ์แทนจำนวน นิยมใช้ตัวอักษรภาษาอังกฤษตัวเล็ก เช่น x,
y แทนจำนวน และเรียกอักษรเหล่านั้นว่า ตัวแปร สำหรับตัวเลขที่แทนจำนวน
เช่น 1,2,3 เรียกว่า ค่าคงตัว เรียกข้อความในรูปสัญลักษณ์
เช่น 2, 3x, 5+x, x-8 ว่า นิพจน์ เรียกนิพจน์ที่เขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไปที่มีเลขชี้กำลังของตัวแปรเป็นจำนวนเต็มบวกหรือศูนย์
เช่น -3, 2x, 3xy ว่า เอกนามและเรียกนิพจน์ที่สามารถเขียนในรูปของเอกนามหรือการบวกเอกนามตั้งแต่สองเอกนามขึ้นไปว่า พหุนาม อ่านเพิ่มเติม
สมบัติของจำนวนจริงเกี่ยวกับการบวกเเละการคูณ
จำนวนตรรกยะ (rational number) เป็นจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์
และเขียนในรูปทศนิยมซ้ำได้
จำนวนอตรรกยะ (irrational number) เป็นจำนวนจริงที่ไม่ใช่จำนวนตรรกยะซึ่งไม่สามารถเขียนในรูปทศนิยมซ้ำหรือเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์แต่เขียนได้ในรูปทศนิยมไม่ซ้ำ
และ
สามารถกำหนดค่าโดยประมาณได้
การเขียนเศษส่วนในรูปทศนิยม คือ การนำส่วนไปหารเศษ อ่านเพิ่มเติม
จำนวนจริง
• ระบบจำนวนจริง |
จากแผนผังแสดงความสัมพันธ์ของจำนวนข้างต้น
จะพบว่า ระบบจำนวนจริง จะประกอบไปด้วย
|
1. จำนวนอตรรกยะ หมายถึง
จำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็ม หรือทศนิยมซ้ำได้
ตัวอย่างเช่น √2 , √3, √5, -√2, - √3, -√5 หรือ
¶ ซึ่งมีค่า 3.14159265...
|
2. จำนวนตรรกยะ หมายถึง
จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มหรือทศนิยมซ้ำได้
ตัวอย่างเช่น อ่านเพิ่มเติม
|
สมัครสมาชิก:
บทความ (Atom)