วันพุธที่ 12 กรกฎาคม พ.ศ. 2560

ฟังก์ชันเอกซ์โพเนนเชียล

ฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่งของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไร อ่านเพิ่มเติม
ผลการค้นหารูปภาพสำหรับ ฟังก์ชันเอกซ์โพเนนเชียล

ฟังชันกำลังสอง

                  ฟังก์ชันกำลังสอง  คือ  ฟังก์ชันที่อยู่ในรูป   y = ax2 + bx + c เมื่อ  a,b,c  เป็นจำนวนจริงใดๆ  และ a ≠ 0 ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ a , b  และ  c  และเมื่อค่าของ  a  เป็นบวกหรือลบ  จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ อ่านเพิ่มเติ
ผลการค้นหารูปภาพสำหรับ ฟังก์ชันกำลังสอง

ฟังชันเชิงเส้น

 1.2 ฟังก์ชันเชิงเส้น   คือ ฟังก์ชันที่อยู่ในรูป y = ax+b เมื่อ a ,b เป็นจำนวนจริง และ  กราฟของฟังก์ชันเชิงเส้นจะเป็นเส้นตรง

           ตัวอย่างของฟังก์ชันเชิงเส้น   ได้แก่

    ฟังก์ชัน  y  =  ax + b  เมื่อ    a  =  0  จะได้ฟังก์ชันที่อยู่ในรูป  y  =  b  ซึ่งมีชื่อเรียกว่า  ฟังก์ชันคงตัว  (constant  function)  กราฟของฟังก์ชันคงตัวจะเป็นเส้นตรงที่ขนานกับแกน  X  ตัวอย่างของฟังก์ชันคงตัว  ได้แก่ อ่านเพิ่มเติม
ผลการค้นหารูปภาพสำหรับ ฟังก์ชันเชิงเส้น

ความสัมพันธ์เเละนฟังชัน

คู่อันดับ (Order Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ a, b จะเขียนแทนด้วย (a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลัง
(การเท่ากับของคู่อันดับ) (a, b) = (c, d) ก็ต่อเมื่อ a = c และ b = d

ผลคูณคาร์ทีเชียน (Cartesian Product) ผลคูณคาร์ทีเซียนของเซต A และเซต B คือ เซตของคู่อันดับ (a, b) ทั้งหมด โดยที่ a เป็นสมาชิกของเซต A และ b เป็นสมาชิกของเซต B อ่านเพิ่มเติม
ผลการค้นหารูปภาพสำหรับ ความสัมพันธ์และฟังก์ชัน

การนำสมบัติของจำนวนจริงไปใช้ในการเเก้สมการกำลังสอง

ในการเขียนสัญลักษณ์แทนจำนวน นิยมใช้ตัวอักษรภาษาอังกฤษตัวเล็ก เช่น x, y แทนจำนวน และเรียกอักษรเหล่านั้นว่า ตัวแปร สำหรับตัวเลขที่แทนจำนวน เช่น 1,2,3 เรียกว่า ค่าคงตัว เรียกข้อความในรูปสัญลักษณ์ เช่น 2, 3x, 5+x, x-8 ว่า นิพจน์ เรียกนิพจน์ที่เขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไปที่มีเลขชี้กำลังของตัวแปรเป็นจำนวนเต็มบวกหรือศูนย์ เช่น -3, 2x, 3xy  ว่า เอกนามและเรียกนิพจน์ที่สามารถเขียนในรูปของเอกนามหรือการบวกเอกนามตั้งแต่สองเอกนามขึ้นไปว่า พหุนาม อ่านเพิ่มเติม
ผลการค้นหารูปภาพสำหรับ การนำสมบัติของจำนวนจริงไปใช้ในการเเก้สมการกำลังสอง

สมบัติของจำนวนจริงเกี่ยวกับการบวกเเละการคูณ

จำนวนตรรกยะ (rational number) เป็นจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ และเขียนในรูปทศนิยมซ้ำได้
จำนวนอตรรกยะ (irrational number) เป็นจำนวนจริงที่ไม่ใช่จำนวนตรรกยะซึ่งไม่สามารถเขียนในรูปทศนิยมซ้ำหรือเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์แต่เขียนได้ในรูปทศนิยมไม่ซ้ำ และ
สามารถกำหนดค่าโดยประมาณได้

การเขียนเศษส่วนในรูปทศนิยม คือ การนำส่วนไปหารเศษ อ่านเพิ่มเติม
ผลการค้นหารูปภาพสำหรับ สมบัติของจำนวนจริงเกี่ยวกับการบวกเเละการคูณ

จำนวนจริง


ระบบจำนวนจริง
จากแผนผังแสดงความสัมพันธ์ของจำนวนข้างต้น จะพบว่า ระบบจำนวนจริง จะประกอบไปด้วย
1. จำนวนอตรรกยะ หมายถึง จำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็ม หรือทศนิยมซ้ำได้ ตัวอย่างเช่น √2 , √3, √5, -√2, - √3, -√5 หรือ ซึ่งมีค่า 3.14159265...
2. จำนวนตรรกยะ หมายถึง จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มหรือทศนิยมซ้ำได้ ตัวอย่างเช่น อ่านเพิ่มเติม
ผลการค้นหารูปภาพสำหรับ จำนวนจริง